
argon2-cffi Documentation
Release 21.3.0

Hynek Schlawack

Aug 19, 2022





CONTENTS

1 User’s Guide 3

2 Project Information 17

3 Indices and tables 19

Python Module Index 21

Index 23

i



ii



argon2-cffi Documentation, Release 21.3.0

Release v21.3.0 (What’s new?)

Argon2 won the Password Hashing Competition and argon2-cffi is the simplest way to use it in Python and PyPy:

>>> from argon2 import PasswordHasher
>>> ph = PasswordHasher()
>>> hash = ph.hash("correct horse battery staple")
>>> hash
'$argon2id$v=19$m=65536,t=3,p=4$MIIRqgvgQbgj220jfp0MPA$YfwJSVjtjSU0zzV/P3S9nnQ/
→˓USre2wvJMjfCIjrTQbg'
>>> ph.verify(hash, "correct horse battery staple")
True
>>> ph.check_needs_rehash(hash)
False
>>> ph.verify(hash, "Tr0ub4dor&3")
Traceback (most recent call last):
...

argon2.exceptions.VerifyMismatchError: The password does not match the supplied hash

CONTENTS 1

https://github.com/hynek/argon2-cffi/blob/21.3.0/CHANGELOG.md
https://github.com/p-h-c/phc-winner-argon2
https://www.password-hashing.net/


argon2-cffi Documentation, Release 21.3.0

2 CONTENTS



CHAPTER

ONE

USER’S GUIDE

1.1 What is Argon2?

Note: TL;DR: Use argon2.PasswordHasher with its default parameters to securely hash your passwords.

You do not need to read or understand anything below this box.

Argon2 is a secure password hashing algorithm. It is designed to have both a configurable runtime as well as memory
consumption.

This means that you can decide how long it takes to hash a password and how much memory is required.

Argon2 comes in three variants:

Argon2d
is faster and uses data-depending memory access, which makes it less suitable for hashing secrets and more
suitable for cryptocurrencies and applications with no threats from side-channel timing attacks.

Argon2i
uses data-independent memory access, which is preferred for password hashing and password-based key deriva-
tion. Argon2i is slower as it makes more passes over the memory to protect from tradeoff attacks.

Argon2id
is a hybrid of Argon2i and Argon2d, using a combination of data-depending and data-independent memory
accesses, which gives some of Argon2i’s resistance to side-channel cache timing attacks and much of Argon2d’s
resistance to GPU cracking attacks.

1.1.1 Why “just use bcrypt” Is Not the Best Answer (Anymore)

The current workhorses of password hashing are unquestionably bcrypt and PBKDF2. And while they’re still fine to
use, the password cracking community embraced new technologies like GPUs and ASICs to crack password in a highly
parallel fashion.

An effective measure against extreme parallelism proved making computation of password hashes also memory hard.
The best known implementation of that approach is to date scrypt. However according to the Argon2 paper, page 2:

[. . . ] the existence of a trivial time-memory tradeoff allows compact implementations with the same energy
cost.

Therefore a new algorithm was needed. This time future-proof and with committee-vetting instead of single imple-
mentors.

3

https://en.wikipedia.org/wiki/Bcrypt
https://en.wikipedia.org/wiki/PBKDF2
https://hashcat.net/hashcat/
https://en.wikipedia.org/wiki/Application-specific_integrated_circuit
https://en.wikipedia.org/wiki/Scrypt
https://www.password-hashing.net/argon2-specs.pdf


argon2-cffi Documentation, Release 21.3.0

1.1.2 Password Hashing Competition

The Password Hashing Competition took place between 2012 and 2015 to find a new, secure, and future-proof password
hashing algorithm. Previously the NIST was in charge but after certain events and revelations their integrity has been
put into question by the general public. So a group of independent cryptographers and security researchers came
together.

In the end, Argon2 was announced as the winner.

1.2 Installation

1.2.1 Using a Vendored Argon2

python -m pip install argon2-cffi

should be all it takes.

But since argon2-cffi depends on argon2-cffi-bindings that vendors Argon2’s C code by default, it can lead to compli-
cations depending on the platform.

The C code is known to compile and work on all common platforms (including x86, ARM, and PPC). On x86, an
SSE2-optimized version is used.

If something goes wrong, please try to update your cffi, pip and setuptools packages first:

python -m pip install -U cffi pip setuptools

Overall this should be the safest bet because argon2-cffi has been specifically tested against the vendored version.

Wheels

Binary wheels for macOS, Windows, and Linux are provided on PyPI by argon2-cffi-bindings. With a recent-enough
pip and setuptools, they should be used automatically.

Source Distribution

A working C compiler and CFFI environment are required to build the argon2-cffi-bindings dependency. If you’ve been
able to compile Python CFFI extensions before, argon2-cffi should install without any problems.

1.2.2 Using a System-wide Installation of Argon2

If you set ARGON2_CFFI_USE_SYSTEM to 1 (and only 1), argon2-cffi-bindings will not build its bindings. However
binary wheels are preferred by pip and Argon2 gets installed along with argon2-cffi anyway.

Therefore you also have to instruct pip to use a source distribution of argon2-cffi-bindings:

env ARGON2_CFFI_USE_SYSTEM=1 \
python -m pip install --no-binary=argon2-cffi-bindings argon2-cffi

This approach can lead to problems around your build chain and you can run into incompatibilities between Argon2
and argon2-cffi if the latter has been tested against a different version.

It is your own responsibility to deal with these risks if you choose this path.

4 Chapter 1. User’s Guide

https://www.password-hashing.net/
https://en.wikipedia.org/wiki/Dual_EC_DRBG
https://groups.google.com/forum/#!topic/crypto-competitions/3QNdmwBS98o
https://github.com/hynek/argon2-cffi-bindings
https://en.wikipedia.org/wiki/SSE2
https://pythonwheels.com
https://pypi.org/project/argon2-cffi-bindings/
https://github.com/hynek/argon2-cffi-bindings
https://cffi.readthedocs.io/en/latest/installation.html
https://github.com/hynek/argon2-cffi-bindings
https://github.com/hynek/argon2-cffi-bindings


argon2-cffi Documentation, Release 21.3.0

Available since version 18.1.0. The --no-binary option value changed in 21.2.0 due to the outsourcing of the binary
bindings.

1.2.3 Override Automatic SSE2 Detection

Usually the build process tries to guess whether or not it should use SSE2-optimized code. Despite our best efforts,
this can go wrong.

Therefore you can use the ARGON2_CFFI_USE_SSE2 environment variable to control the process:

• If you set it to 1, argon2-cffi will build with SSE2 support.

• If you set it to 0, argon2-cffi will build without SSE2 support.

• If you set it to anything else, it will be ignored and argon2-cffi will try to guess.

Available since version 20.1.0.

1.3 API Reference

argon2-cffi comes with an high-level API and uses the officially recommended low-memory Argon2 parameters that
result in a verification time of 40–50ms on recent-ish hardware.

Warning: The current memory requirement is set to rather conservative 64 MB. However, in memory constrained
environments such as Docker containers that can lead to problems. One possible non-obvious symptom are apparent
freezes that are caused by swapping.

Please check Choosing Parameters for more details.

Unless you have any special needs, all you need to know is:

>>> from argon2 import PasswordHasher
>>> ph = PasswordHasher()
>>> hash = ph.hash("correct horse battery staple")
>>> hash
'$argon2id$v=19$m=65536,t=3,p=4$MIIRqgvgQbgj220jfp0MPA$YfwJSVjtjSU0zzV/P3S9nnQ/
→˓USre2wvJMjfCIjrTQbg'
>>> ph.verify(hash, "correct horse battery staple")
True
>>> ph.check_needs_rehash(hash)
False
>>> ph.verify(hash, "Tr0ub4dor&3")
Traceback (most recent call last):
...

argon2.exceptions.VerifyMismatchError: The password does not match the supplied hash

A login function could thus look like this:

import argon2

ph = argon2.PasswordHasher()

(continues on next page)

1.3. API Reference 5

https://en.wikipedia.org/wiki/SSE2


argon2-cffi Documentation, Release 21.3.0

(continued from previous page)

def login(db, user, password):
hash = db.get_password_hash_for_user(user)

# Verify password, raises exception if wrong.
ph.verify(hash, password)

# Now that we have the cleartext password,
# check the hash's parameters and if outdated,
# rehash the user's password in the database.
if ph.check_needs_rehash(hash):

db.set_password_hash_for_user(user, ph.hash(password))

While the PasswordHasher class has the aspiration to be good to use out of the box, it has all the parametrization
you’ll need:

class argon2.PasswordHasher(time_cost: int = 3, memory_cost: int = 65536, parallelism: int = 4, hash_len:
int = 32, salt_len: int = 16, encoding: str = 'utf-8', type: Type = Type.ID)

High level class to hash passwords with sensible defaults.

Uses Argon2id by default and always uses a random salt for hashing. But it can verify any type of Argon2 as
long as the hash is correctly encoded.

The reason for this being a class is both for convenience to carry parameters and to verify the parameters only
once. Any unnecessary slowdown when hashing is a tangible advantage for a brute force attacker.

Parameters

• time_cost (int) – Defines the amount of computation realized and therefore the execution
time, given in number of iterations.

• memory_cost (int) – Defines the memory usage, given in kibibytes.

• parallelism (int) – Defines the number of parallel threads (changes the resulting hash
value).

• hash_len (int) – Length of the hash in bytes.

• salt_len (int) – Length of random salt to be generated for each password.

• encoding (str) – The Argon2 C library expects bytes. So if hash() or verify() are
passed a str, it will be encoded using this encoding.

• type (Type) – Argon2 type to use. Only change for interoperability with legacy systems.

New in version 16.0.0.

Changed in version 18.2.0: Switch from Argon2i to Argon2id based on the recommendation by the current RFC
draft. See also Choosing Parameters.

Changed in version 18.2.0: Changed default memory_cost to 100 MiB and default parallelism to 8.

Changed in version 18.2.0: verify now will determine the type of hash.

Changed in version 18.3.0: The Argon2 type is configurable now.

New in version 21.2.0: from_parameters()

Changed in version 21.2.0: Changed defaults to argon2.profiles.RFC_9106_LOW_MEMORY .

6 Chapter 1. User’s Guide

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://en.wikipedia.org/wiki/Salt_(cryptography)
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://en.wikipedia.org/wiki/Binary_prefix#kibi
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


argon2-cffi Documentation, Release 21.3.0

check_needs_rehash(hash: str)→ bool
Check whether hash was created using the instance’s parameters.

Whenever your Argon2 parameters – or argon2-cffi’s defaults! – change, you should rehash your passwords
at the next opportunity. The common approach is to do that whenever a user logs in, since that should be
the only time when you have access to the cleartext password.

Therefore it’s best practice to check – and if necessary rehash – passwords after each successful authenti-
cation.

Return type
bool

New in version 18.2.0.

classmethod from_parameters(params: Parameters)→ PasswordHasher
Construct a PasswordHasher from params.

New in version 21.2.0.

hash(password: Union[str, bytes])→ str
Hash password and return an encoded hash.

Parameters
password (bytes or str) – Password to hash.

Raises
argon2.exceptions.HashingError – If hashing fails.

Return type
str

verify(hash: Union[str, bytes], password: Union[str, bytes])→ Literal[True]
Verify that password matches hash.

Warning: It is assumed that the caller is in full control of the hash. No other parsing than the deter-
mination of the hash type is done by argon2-cffi.

Parameters

• hash (bytes or str) – An encoded hash as returned from PasswordHasher.hash().

• password (bytes or str) – The password to verify.

Raises

• argon2.exceptions.VerifyMismatchError – If verification fails because hash is not
valid for password.

• argon2.exceptions.VerificationError – If verification fails for other reasons.

• argon2.exceptions.InvalidHash – If hash is so clearly invalid, that it couldn’t be
passed to Argon2.

Returns
True on success, raise VerificationError otherwise.

Return type
bool

1.3. API Reference 7

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/functions.html#bool


argon2-cffi Documentation, Release 21.3.0

Changed in version 16.1.0: Raise VerifyMismatchError on mismatches instead of its more generic su-
perclass.

New in version 18.2.0: Hash type agility.

If you don’t specify any parameters, the following constants are used:

argon2.DEFAULT_RANDOM_SALT_LENGTH

argon2.DEFAULT_HASH_LENGTH

argon2.DEFAULT_TIME_COST

argon2.DEFAULT_MEMORY_COST

argon2.DEFAULT_PARALLELISM

They are taken from argon2.profiles.RFC_9106_LOW_MEMORY .

1.3.1 Profiles

This module offers access to standardized parameters that you can load using PasswordHasher.
from_parameters(). See the source code for concrete values and Choosing Parameters for more information.

New in version 21.2.0.

You can try them out using the CLI interface. For example:

$ python -m argon2 --profile RFC_9106_HIGH_MEMORY
Running Argon2id 100 times with:
hash_len: 32 bytes
memory_cost: 2097152 KiB
parallelism: 4 threads
time_cost: 1 iterations

Measuring...

866.5ms per password verification

That should give you a feeling on how they perform in your environment.

argon2.profiles.RFC_9106_HIGH_MEMORY

Called “FIRST RECOMMENDED option” by RFC 9106.

Requires beefy 2 GiB, so be careful in memory-contrained systems.

New in version 21.2.0.

argon2.profiles.RFC_9106_LOW_MEMORY

Called “SECOND RECOMMENDED option” by RFC 9106.

The main difference is that it only takes 64 MiB of RAM.

The values from this profile are the default parameters used by argon2.PasswordHasher.

New in version 21.2.0.

8 Chapter 1. User’s Guide

https://github.com/hynek/argon2-cffi/blob/main/src/argon2/profiles.py
https://www.rfc-editor.org/rfc/rfc9106.html
https://www.rfc-editor.org/rfc/rfc9106.html


argon2-cffi Documentation, Release 21.3.0

argon2.profiles.PRE_21_2

The default values that argon2-cffi used from 18.2.0 until 21.2.0.

Needs 100 MiB of RAM.

New in version 21.2.0.

argon2.profiles.CHEAPEST

This is the cheapest-possible profile.

Warning: This is only for testing purposes! Do not use in production!

New in version 21.2.0.

1.3.2 Exceptions

exception argon2.exceptions.VerificationError

Verification failed.

You can find the original error message from Argon2 in args[0].

exception argon2.exceptions.VerifyMismatchError

The secret does not match the hash.

Subclass of argon2.exceptions.VerificationError.

New in version 16.1.0.

exception argon2.exceptions.HashingError

Raised if hashing failed.

You can find the original error message from Argon2 in args[0].

exception argon2.exceptions.InvalidHash

Raised if the hash is invalid before passing it to Argon2.

New in version 18.2.0.

1.3.3 Utilities

argon2.extract_parameters(hash: str)→ Parameters
Extract parameters from an encoded hash.

Parameters
params (str) – An encoded Argon2 hash string.

Return type
Parameters

New in version 18.2.0.

class argon2.Parameters(type: Type, version: int, salt_len: int, hash_len: int, time_cost: int, memory_cost: int,
parallelism: int)

Argon2 hash parameters.

See Choosing Parameters on how to pick them.

1.3. API Reference 9

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int


argon2-cffi Documentation, Release 21.3.0

Variables

• type (Type) – Hash type.

• version (int) – Argon2 version.

• salt_len (int) – Length of the salt in bytes.

• hash_len (int) – Length of the hash in bytes.

• time_cost (int) – Time cost in iterations.

• memory_cost (int) – Memory cost in kibibytes.

• parallelism (int) – Number of parallel threads.

New in version 18.2.0.

1.3.4 Low Level

Low-level functions if you want to build your own higher level abstractions.

Warning: This is a “Hazardous Materials” module. You should ONLY use it if you’re 100% absolutely sure that
you know what you’re doing because this module is full of land mines, dragons, and dinosaurs with laser guns.

class argon2.low_level.Type(value)
Enum of Argon2 variants.

Please see Choosing Parameters on how to pick one.

D = 0

Argon2d is faster and uses data-depending memory access, which makes it less suitable for hashing secrets
and more suitable for cryptocurrencies and applications with no threats from side-channel timing attacks.

I = 1

Argon2i uses data-independent memory access. Argon2i is slower as it makes more passes over the memory
to protect from tradeoff attacks.

ID = 2

Argon2id is a hybrid of Argon2i and Argon2d, using a combination of data-depending and data-independent
memory accesses, which gives some of Argon2i’s resistance to side-channel cache timing attacks and much
of Argon2d’s resistance to GPU cracking attacks.

That makes it the preferred type for password hashing and password-based key derivation.

New in version 16.3.0.

argon2.low_level.ARGON2_VERSION = 19

The latest version of the Argon2 algorithm that is supported (and used by default).

New in version 16.1.0.

argon2.low_level.hash_secret(secret: bytes, salt: bytes, time_cost: int, memory_cost: int, parallelism: int,
hash_len: int, type: Type, version: int = 19)→ bytes

Hash secret and return an encoded hash.

An encoded hash can be directly passed into verify_secret() as it contains all parameters and the salt.

Parameters

10 Chapter 1. User’s Guide

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes


argon2-cffi Documentation, Release 21.3.0

• secret (bytes) – Secret to hash.

• salt (bytes) – A salt. Should be random and different for each secret.

• type (Type) – Which Argon2 variant to use.

• version (int) – Which Argon2 version to use.

For an explanation of the Argon2 parameters see PasswordHasher.

Return type
bytes

Raises
argon2.exceptions.HashingError – If hashing fails.

New in version 16.0.0.

>>> import argon2
>>> argon2.low_level.hash_secret(
... b"secret", b"somesalt",
... time_cost=1, memory_cost=8, parallelism=1, hash_len=64, type=argon2.low_level.
→˓Type.D
... )
b'$argon2d$v=19$m=8,t=1,p=1$c29tZXNhbHQ$ba2qC75j0+JAunZZ/
→˓L0hZdQgCv+tOieBuKKXSrQiWm7nlkRcK+YqWr0i0m0WABJKelU8qHJp0SZzH0b1Z+ITvQ'

argon2.low_level.verify_secret(hash: bytes, secret: bytes, type: Type)→ Literal[True]
Verify whether secret is correct for hash of type.

Parameters

• hash (bytes) – An encoded Argon2 hash as returned by hash_secret().

• secret (bytes) – The secret to verify whether it matches the one in hash.

• type (Type) – Type for hash.

Raises

• argon2.exceptions.VerifyMismatchError – If verification fails because hash is not
valid for secret of type.

• argon2.exceptions.VerificationError – If verification fails for other reasons.

Returns
True on success, raise VerificationError otherwise.

Return type
bool

New in version 16.0.0.

Changed in version 16.1.0: Raise VerifyMismatchError on mismatches instead of its more generic superclass.

The raw hash can also be computed:

argon2.low_level.hash_secret_raw(secret: bytes, salt: bytes, time_cost: int, memory_cost: int, parallelism:
int, hash_len: int, type: Type, version: int = 19)→ bytes

Hash password and return a raw hash.

This function takes the same parameters as hash_secret().

New in version 16.0.0.

1.3. API Reference 11

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://en.wikipedia.org/wiki/Salt_(cryptography)
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes


argon2-cffi Documentation, Release 21.3.0

>>> argon2.low_level.hash_secret_raw(
... b"secret", b"somesalt",
... time_cost=1, memory_cost=8, parallelism=1, hash_len=8, type=argon2.low_level.
→˓Type.D
... )
b'\xe4n\xf5\xc8|\xa3>\x1d'

The super low-level argon2_core() function is exposed too if you need access to very specific options:

argon2.low_level.core(context: Any, type: int)→ int
Direct binding to the argon2_ctx function.

Warning: This is a strictly advanced function working on raw C data structures. Both Argon2’s and argon2-
cffi’s higher-level bindings do a lot of sanity checks and housekeeping work that you are now responsible for
(e.g. clearing buffers). The structure of the context object can, has, and will change with any release!

Use at your own peril; argon2-cffi does not use this binding itself.

Parameters

• context – A CFFI Argon2 context object (i.e. an struct
Argon2_Context/argon2_context).

• type (int) – Which Argon2 variant to use. You can use the value field of Type’s fields.

Return type
int

Returns
An Argon2 error code. Can be transformed into a string using error_to_str().

New in version 16.0.0.

In order to use core(), you need access to argon2-cffi’s FFI objects. Therefore it is OK to use argon2.low_level.
ffi and argon2.low_level.lib when working with it:

>>> from argon2.low_level import ARGON2_VERSION, Type, core, ffi, lib
>>> pwd = b"secret"
>>> salt = b"12345678"
>>> hash_len = 8
>>> # Make sure you keep FFI objects alive until *after* the core call!
>>> cout = ffi.new("uint8_t[]", hash_len)
>>> cpwd = ffi.new("uint8_t[]", pwd)
>>> csalt = ffi.new("uint8_t[]", salt)
>>> ctx = ffi.new(
... "argon2_context *", dict(
... version=ARGON2_VERSION,
... out=cout, outlen=hash_len,
... pwd=cpwd, pwdlen=len(pwd),
... salt=csalt, saltlen=len(salt),
... secret=ffi.NULL, secretlen=0,
... ad=ffi.NULL, adlen=0,
... t_cost=1,
... m_cost=8,
... lanes=1, threads=1,

(continues on next page)

12 Chapter 1. User’s Guide

https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int


argon2-cffi Documentation, Release 21.3.0

(continued from previous page)

... allocate_cbk=ffi.NULL, free_cbk=ffi.NULL,

... flags=lib.ARGON2_DEFAULT_FLAGS,

... )

... )
>>> ctx
<cdata 'struct Argon2_Context *' owning 120 bytes>
>>> core(ctx, Type.D.value)
0
>>> out = bytes(ffi.buffer(ctx.out, ctx.outlen))
>>> out
b'\xb4\xe2HjO\x14d\x9b'
>>> out == argon2.low_level.hash_secret_raw(pwd, salt, 1, 8, 1, 8, Type.D)
True

All constants and types on argon2.low_level.lib are guaranteed to stay as long they are not altered by Argon2
itself.

argon2.low_level.error_to_str(error: int)→ str
Convert an Argon2 error code into a native string.

Parameters
error (int) – An Argon2 error code as returned by core().

Return type
str

New in version 16.0.0.

1.3.5 Deprecated APIs

These APIs are from the first release of argon2-cffi and proved to live in an unfortunate mid-level. On one hand they
have defaults and check parameters but on the other hand they only consume byte strings.

Therefore the decision has been made to replace them by a high-level (argon2.PasswordHasher) and a low-level
(argon2.low_level) solution. There are no immediate plans to remove them though.

argon2.hash_password(password: bytes, salt: Optional[bytes] = None, time_cost: int = 3, memory_cost: int =
65536, parallelism: int = 4, hash_len: int = 32, type: Type = Type.I)→ bytes

Legacy alias for hash_secret() with default parameters.

Deprecated since version 16.0.0: Use argon2.PasswordHasher for passwords.

argon2.hash_password_raw(password: bytes, salt: Optional[bytes] = None, time_cost: int = 3, memory_cost: int
= 65536, parallelism: int = 4, hash_len: int = 32, type: Type = Type.I)→ bytes

Legacy alias for hash_secret_raw() with default parameters.

Deprecated since version 16.0.0: Use argon2.PasswordHasher for passwords.

argon2.verify_password(hash: bytes, password: bytes, type: Type = Type.I)→ Literal[True]
Legacy alias for verify_secret() with default parameters.

Deprecated since version 16.0.0: Use argon2.PasswordHasher for passwords.

1.3. API Reference 13

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/typing.html#typing.Literal


argon2-cffi Documentation, Release 21.3.0

1.4 Choosing Parameters

Note: You can probably just use argon2.PasswordHasher with its default values and be fine. But it’s good to double
check using argon2-cffi’s CLI client, whether its defaults are too slow or too fast for your use case.

Finding the right parameters for a password hashing algorithm is a daunting task. As of September 2021, we have the
official Internet standard RFC 9106 to help use with it.

It comes with two recommendations in section 4, that (as of argon2-cffi 21.2.0) you can load directly from the argon2.
profiles module: argon2.profiles.RFC_9106_HIGH_MEMORY (called “FIRST RECOMMENDED”) and
argon2.profiles.RFC_9106_LOW_MEMORY (“SECOND RECOMMENDED”) into argon2.PasswordHasher.
from_parameters().

Please use the CLI interface together with its --profile argument to see if they work for you.

If you need finer tuning, the current recommended best practice is as follow:

1. Choose whether you want Argon2i, Argon2d, or Argon2id (type). If you don’t know what that means, choose
Argon2id (argon2.Type.ID).

2. Figure out how many threads can be used on each call to Argon2 (parallelism, called “lanes” in the RFC).
They recommend 4 threads.

3. Figure out how much memory each call can afford (memory_cost). The APIs use Kibibytes (1024 bytes) as
base unit.

4. Select the salt length. 16 bytes is sufficient for all applications, but can be reduced to 8 bytes in the case of space
constraints.

5. Choose a hash length (hash_len, called “tag length” in the documentation). 16 bytes is sufficient for password
verification.

6. Figure out how long each call can take. One recommendation for concurrent user logins is to keep it under 0.5
ms. The RFC used to recommend under 500 ms. The truth is somewhere between those two values: more is
more secure, less is a better user experience. argon2-cffi’s current defaults land with ~50ms somewhere in the
middle, but the actual time depends on your hardware.

Please note though, that even a verification time of 1 second won’t protect you against bad passwords from the
“top 10,000 passwords” lists that you can find online.

7. Measure the time for hashing using your chosen parameters. Start with time_cost=1 and measure the time
it takes. Raise time_cost until it is within your accounted time. If time_cost=1 takes too long, lower
memory_cost.

argon2-cffi’s CLI will help you with this process.

Note: Alternatively, you can also refer to the OWASP cheatsheet.

14 Chapter 1. User’s Guide

https://www.rfc-editor.org/rfc/rfc9106.html
https://www.rfc-editor.org/rfc/rfc9106.html#section-4
https://en.wikipedia.org/wiki/Kibibyte
https://web.archive.org/web/20160304024620/https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2015/march/enough-with-the-salts-updates-on-secure-password-schemes/
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html#argon2id


argon2-cffi Documentation, Release 21.3.0

1.5 CLI

To aid you with finding the parameters, argon2-cffi offers a CLI interface that can be accessed using python -m
argon2. It will benchmark Argon2’s password verification in the current environment:

$ python -m argon2
Running Argon2id 100 times with:
hash_len: 32 bytes
memory_cost: 65536 KiB
parallelism: 4 threads
time_cost: 3 iterations

Measuring...

45.7ms per password verification

You can use command line arguments to set hashing parameters. Either by setting them one by one (-t for time, -m
for memory, -p for parallelism, -l for hash length), or by passing --profile followed by one of the names from
argon2.profiles. In that case, the other parameters are ignored. If you don’t pass any arguments as above, it runs
with argon2.PasswordHasher’s default values.

This should make it much easier to determine the right parameters for your use case and your environment.

1.6 Frequently Asked Questions

I’m using bcrypt/PBKDF2/scrypt/yescrypt, do I need to migrate?
Using password hashes that aren’t memory hard carries a certain risk but there’s no immediate danger or need
for action. If however you are deciding how to hash password today, Argon2 is the superior, future-proof choice.

But if you already use one of the hashes mentioned in the question, you should be fine for the foreseeable future.
If you’re using scrypt or yescrypt, you will be probably fine for good.

Why do the verify() methods raise an Exception instead of returning False?

1. The Argon2 library had no concept of a “wrong password” error in the beginning. Therefore when writing
these bindings, an exception with the full error had to be raised so you could inspect what went actually
wrong.

It goes without saying that it’s impossible to switch now for backward-compatibility reasons.

2. In my opinion, a wrong password should raise an exception such that it can’t pass unnoticed by accident.
See also The Zen of Python: “Errors should never pass silently.”

3. It’s more Pythonic.

1.5. CLI 15

https://docs.python.org/3/glossary.html#term-EAFP


argon2-cffi Documentation, Release 21.3.0

16 Chapter 1. User’s Guide



CHAPTER

TWO

PROJECT INFORMATION

argon2-cffi is available from PyPI, the documentation lives at Read the Docs, the code on GitHub. The low-level
Argon2 CFFI bindings are maintained in the separate project argon2-cffi-bindings.

It targets Python 3.6 and newer, and PyPy3. The last version that works with Python 2.7 is 20.1.0, and the last version
that works with Python 3.5 is 21.1.0.

argon2-cffi implements Argon2 version 1.3, as described in Argon2: the memory-hard function for password hashing
and other applications.

2.1 argon2-cffi for Enterprise

Available as part of the Tidelift Subscription.

The maintainers of argon2-cffi and thousands of other packages are working with Tidelift to deliver commercial support
and maintenance for the open source packages you use to build your applications. Save time, reduce risk, and improve
code health, while paying the maintainers of the exact packages you use. Learn more.

2.1.1 Credits & License

argon2-cffi is maintained by Hynek Schlawack and released under the MIT license.

The development is kindly supported by Variomedia AG. Please consider supporting me too!

A full list of contributors can be found in GitHub’s overview.

17

https://pypi.org/project/argon2-cffi/
https://argon2-cffi.readthedocs.io/
https://github.com/hynek/argon2-cffi
https://github.com/hynek/argon2-cffi-bindings
https://www.cryptolux.org/images/0/0d/Argon2.pdf
https://www.cryptolux.org/images/0/0d/Argon2.pdf
https://tidelift.com/subscription/pkg/pypi-argon2-cffi?utm_source=undefined&utm_medium=referral&utm_campaign=enterprise&utm_term=repo
https://hynek.me/
https://github.com/hynek/argon2-cffi/blob/main/LICENSE
https://www.variomedia.de/
https://hynek.me/say-thanks/
https://github.com/hynek/argon2-cffi/graphs/contributors


argon2-cffi Documentation, Release 21.3.0

18 Chapter 2. Project Information



CHAPTER

THREE

INDICES AND TABLES

• genindex

• search

19



argon2-cffi Documentation, Release 21.3.0

20 Chapter 3. Indices and tables



PYTHON MODULE INDEX

a
argon2, 5
argon2.low_level, 10
argon2.profiles, 8

21



argon2-cffi Documentation, Release 21.3.0

22 Python Module Index



INDEX

A
argon2

module, 5
argon2.low_level
module, 10

argon2.profiles
module, 8

ARGON2_VERSION (in module argon2.low_level), 10

C
CHEAPEST (in module argon2.profiles), 9
check_needs_rehash() (argon2.PasswordHasher

method), 6
core() (in module argon2.low_level), 12

D
D (argon2.low_level.Type attribute), 10
DEFAULT_HASH_LENGTH (in module argon2), 8
DEFAULT_MEMORY_COST (in module argon2), 8
DEFAULT_PARALLELISM (in module argon2), 8
DEFAULT_RANDOM_SALT_LENGTH (in module argon2), 8
DEFAULT_TIME_COST (in module argon2), 8

E
error_to_str() (in module argon2.low_level), 13
extract_parameters() (in module argon2), 9

F
from_parameters() (argon2.PasswordHasher class

method), 7

H
hash() (argon2.PasswordHasher method), 7
hash_password() (in module argon2), 13
hash_password_raw() (in module argon2), 13
hash_secret() (in module argon2.low_level), 10
hash_secret_raw() (in module argon2.low_level), 11
HashingError, 9

I
I (argon2.low_level.Type attribute), 10

ID (argon2.low_level.Type attribute), 10
InvalidHash, 9

M
module

argon2, 5
argon2.low_level, 10
argon2.profiles, 8

P
Parameters (class in argon2), 9
PasswordHasher (class in argon2), 6
PRE_21_2 (in module argon2.profiles), 8

R
RFC_9106_HIGH_MEMORY (in module argon2.profiles), 8
RFC_9106_LOW_MEMORY (in module argon2.profiles), 8

T
Type (class in argon2.low_level), 10

V
VerificationError, 9
verify() (argon2.PasswordHasher method), 7
verify_password() (in module argon2), 13
verify_secret() (in module argon2.low_level), 11
VerifyMismatchError, 9

23


	User’s Guide
	What is Argon2?
	Why “just use bcrypt” Is Not the Best Answer (Anymore)
	Password Hashing Competition

	Installation
	Using a Vendored Argon2
	Wheels
	Source Distribution

	Using a System-wide Installation of Argon2
	Override Automatic SSE2 Detection

	API Reference
	Profiles
	Exceptions
	Utilities
	Low Level
	Deprecated APIs

	Choosing Parameters
	CLI
	Frequently Asked Questions

	Project Information
	argon2-cffi for Enterprise
	Credits & License


	Indices and tables
	Python Module Index
	Index

